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Abstract

Introduction:Neuropsychological test scores are limited and standard outcomes may

mask the heterogeneity of cognitive impairment. This article presents the calculation

and evaluation of six composite scores that quantify domain-specific impairment.

Methods: Parameters for composite scores calculation were learned by performing

confirmatory factor analysis in a sample of participants from the Alzheimer’s Disease

Neuroimaging Initiative database. The obtained scoreswere evaluatedwith a separate

sample of mild cognitive impairment (MCI) in two automated tasks: unsupervised par-

tition in different subgroups and prediction of progression to dementia for different

timewindows.

Results: MCI subgroups with distinctive cognitive profiles and risk of progression

emerged from cluster analysis. Composite scores outperform standard neuropsycho-

logical tests when automatically predicting progression within time windows up to 5

years.

Conclusions: Domain-specific composite scores are useful to delineate profiles of

impairment, stratify theMCI risk, and predict progression to dementia.

KEYWORDS

cluster analysis, cognitive domains, composite scores, mild cognitive impairment, neuropsycho-
logical tests

1 INTRODUCTION

Dementia is a syndrome characterized by deterioration of cognition

and behavior to the point that the ability to perform daily activities is

impaired. When individuals show some memory or cognitive impair-

ment, but exhibit normal behavior, they are diagnosed with mild cog-
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nitive impairment (MCI). Alzheimer’s disease (AD) is themost common

cause of dementia; therefore, identifying which individuals with MCI

aremore likely to developADdementia is an important research path.1

Currently, there is no cure for AD and most clinical trials, designed

to pharmaceutically slow down AD progression from MCI to demen-

tia, have so far failed.2 Aside from the questioned efficacy of the
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tested treatments, other possible reasons for failures may come from

two sources. First, heterogeneity of recruited participants, including

advanced AD and variable MCI manifestations, or participants with-

out any underlying pathology.2 Second, standard cognitive outcomes,

set as endpoints, might be highly variable and not sensitive enough

to detect subtle cognitive performance changes.2,3 This is the case of

thewidely usedAlzheimer’sDiseaseAssessment Scale—Cognitive sub-

scale (ADAS-Cog), that has shown high variability and poor sensitivity,

likely bymeasurement errors, patient heterogeneity, and ceiling effects

of its subscores, making some subscores uninformative in patients at

early stages.3–5

Composite outcomes computed with informative subscores from

one or multiple tests have been demonstrated to be more robust and

sensiblemeasures todetect cognitive and functional changes inMCI.3,4

However, single composite scores may mask the heterogeneity of cog-

nitive impairment.

Patients diagnosed with MCI show varying levels of impairment in

different cognitive domains beyond memory, including language, visu-

ospatial skills, attention, and executive function.6–8 This heterogene-

ity is likely linked to differences in the clinical evolution.9,10 Therefore,

evaluationof domain-specific changes couldhelp to identify individuals

at greater risk of progressing to dementia.

Composite scores for measuring specific domain impairment have

been proposed for memory11 and executive function.12 These scores

mitigate the effect of measurement errors for individual items

while combining informative subscores from multiple tests. Evalu-

ation of these two previously proposed scores demonstrated they

show better performance than individual test scores in detecting

domain changes over time and predicting conversion from MCI to

dementia.11,12

This article presents a data-driven framework combining and

weighting subscores from the neuropsychological test battery to cal-

culate a set of domain-specific composite scores that quantify impair-

ment in six domains: memory, language, visuospatial abilities, execu-

tive functioning, orientation, and attention. The weighting schemewas

obtained by estimating the parameters of a multifactor model with

confirmatory factor analysis (CFA). The usefulness of the developed

composite scores in MCI was evaluated in two different tasks using

machine learningmethods. First, the set of composite scoreswas taken

as input for unsupervised cluster analysis, aiming to identify different

subgroups of individuals in theMCI sample. Second, we tested the abil-

ity of composite scores to predict progression from MCI to dementia

within specific time windows, ranging from 1 to 5 years, and compared

the performance against standard outcomes.

2 METHODS

The data-drivenmethodology presented here is divided into two parts.

The first consists of learning the parameters for subscore standard-

ization and domain scores calculation. The second evaluates the com-

posite scores in two automated tasks: clustering of patients diagnosed

withMCI and predicting progression to dementia.

RESEARCH INCONTEXT

1. Systematic review:We used PubMed andGoogle scholar

to search in the literature for works investigating cog-

nitive heterogeneity in mild cognitive impairment (MCI)

patients.We found theseworksdependon individual sub-

scoremeasures that are sensitive tomeasurement errors

anddomain-specific composite scores havenot beenused

for this task. In the same direction, we also found that

standard outcomemeasures for clinical trials and patient

monitoring mask the cognitive heterogeneity of patients

diagnosedwithMCI.

2. Interpretation: We present a set of six domain-specific

composite scores to characterize the cognitive state of

MCI patients. Using these measures in cluster analysis,

four subgroups of MCI were identified that exhibit dif-

ferent risk of progression to Alzheimer’s disease (AD)

dementia. The combination of proposed domain scores

performbetter than standard outcomes in the automated

prediction of progression.

3. Future directions: Future research includes (1) the study

of associations between domain scores and AD-specific

biomarkers to improve the understanding of underlying

mechanismscausing the cognitive impairment and (2) lon-

gitudinal evaluation of scores to delineate the paths of

impairment progression.

2.1 Participant data

Data was provided by the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database. ADNI is a public–private partnership with the

primary goal of testing whether brain imaging, biological markers, and

clinical and neuropsychological assessment can be combined to mea-

sure the progression of MCI and early AD. The dataset herein used

comprised 680 patientswithMCI and 668 cognitively unimpaired (CU)

participants. The demographics and characteristics of these groups

are presented in Table 1, corresponding to the first visit with com-

plete information. Subscores from nine different tests were used in

the present study, namely: ADAS-Cog,13 Mini-Mental State Examina-

tion (MMSE),14 Montreal Cognitive Assessment (MoCA),15 Rey Audi-

tory Verbal Learning Test (AVLT), Logical Memory test immediate and

delayed,16 Clock Drawing test,17 Category Fluency test,18 Trail Mak-

ing A andB,19 and one of the naming tests depending on its availability:

Boston Naming Test20 orMultilingual Naming Test.21

2.2 Data partition

The ADNI sample was split following the two methodological parts:

learning and evaluation. For the learning set, 60% of the CU sample
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TABLE 1 Description of sets used in each step of themethodology, including the percentage of carriers of the ε4 allele of the apolipoprotein E
(APOE) gene, and distributions of total scores for theMini-Mental State Examination (MMSE), Clinical Dementia Rating–Sum of Boxes (CDR-SoB),
and the Alzheimer’s Disease Assessment Scale–Cognitive subscale (ADAS-Cog)

Learning set Evaluation set

CU (n= 668) MCI (n= 680)

Normative data

(n= 400) CFA (n= 268)

Evaluation

(n= 272) CFA (n= 408)

Sex (% female) 54.5 59.3 44.5 40.7

Age (mean± SD) 73.4± 6.9 72.6± 8.0 72.6± 8.2 72.8± 7.8

APOE ε4 (% carriers) 31.0 28.9 43.8 46.7

CDR-SoB (mean± SD) 0.05± 0.17 0.05± 0.15 1.51± 1.04 1.50± 0.98

MMSE (mean± SD) 29.2± 1.1 28.9± 1.2 27.9± 1.8 28.0± 1.7

ADAS-Cog (mean± SD) 10.0± 4.7 11.1± 4.5 16.4± 6.8 15.0± 6.8

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive subscale; APOE, apolipoprotein E; CDR-SoB, Clinical Dementia Rating–Sum of

Boxes; CFA, confirmatory factor analysis; CU, cognitively unimpaired; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; SD, standard

deviation.

(n = 400) was taken as normative data for subscore standardization,

while the remaining40% (n=268) and40%of theMCI sample (n=272)

were used to learn the parameters for calculating the composite scores

with CFA. The evaluation set corresponded to the remaining 60% of

MCIparticipants (n=408), forwhich composite scoreswere calculated

using the parameters from the learning set.

2.3 Subscore standardization

Given the heterogeneous scales of neuropsychological tests, some of

the scales were inverted to ensure that increasing values correspond

to poorer performance. An initial set of 50 subscores (File A in support-

ing information) were transformed into standardized regression based

(SRB) z-scores using the parameters learned from a normative sample.

Specifically, each subscore was regressed on age and years of educa-

tion with the group of 400 CU participants. Then, the regression coef-

ficients and residual standard deviationwere used to calculate the SRB

z-scores for all participants, including CU andMCI patients.

The subscore from the naming test after a semantic clue (BMCUED)

was dropped from further analysis because higher values, after scale

inversion, can be associated with poor performance or perfect perfor-

mance without the cue.

2.4 Derivation of domain scores

The estimation of composite measures for six different domains was

done by proposing and testing a factor model, which links a set of sub-

scores from multiple tests with six domains: memory, language, visu-

ospatial abilities, executive functioning, orientation, and attention (see

Figure 1). Before establishing a factor model, variability of subscores

and pairwise correlations were examined in the data partition used for

CFA. Subscores whose variancewas inflated by a few outliers were not

included in the model, neither were the subscores showing no signifi-

cant correlation (greater than 0.25) with any other one and were not

evaluating a similar task (see File A). The factor model was proposed

taking into account what subscores evaluate, but also the number of

previousworks that performed factor analysis on similar neuropsycho-

logical test batteries.11,12,22,23 The hypothesizedmodel was tested and

its parameters were estimated using CFA with the unweighted least

squares estimator. Model fit was evaluated by the root mean square

error of approximation (RMSEA) and the Tucker-Lewis index (TLI).

With the factor model parameters, the unobserved factor scores

are calculated as linear combinations of standardized z-scores.24 The

weightswereestimatedbyminimizing theportionof theobservedvari-

ance that is not explained by the factors (see File B in supporting infor-

mation). The resulting estimated factor values quantify dysfunction of

the different domains included in themodel. The learned set ofweights

can be used to calculate the domain-specific scores of new observa-

tions once they have been transformed into SRB z-scores.

2.5 Clustering the MCI sample

By exploring the existence of MCI subgroups with an unsupervised

clustering method, the six composite scores expose different cognitive

profiles in the MCI sample. Specifically, the partition around medoids

(PAM) method, also known as k-medoids, iteratively splits the data set

in k clusters, being the k representative points the most central points

(medoid) in each cluster, and the remaining points assigned to the clus-

ter with the nearest representative point.25

Here, we incorporated the relations between domains by weight-

ing the distance between two subjects with the estimated covariance

between factors, thereby ensuring that the largest variance dimen-

sions contributemore to the differences between subjects.

The number of clusters was set by revising a collection of 30

indices26 for multiple options of k from 2 to 10. Cluster stability for

these possible partitions (2 ≤ k ≤ 10) was also evaluated following a

bootstrap approach. For a given partition in k subgroups, this process
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F IGURE 1 Proposed factor model connecting six cognitive domains with 35 subscores from nine different neuropsychological tests. A
complete table with each subscore code and description can be found in File A in supporting information. ADAS, Alzheimer’s Disease Assessment
Scale; MMSE,Mini-Mental State Examination;MoCA,Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal Learning Test

consists of partitioning a subsample (80%) in k subgroups, calculating

the overlap with the initial clusters, and repeating this procedure mul-

tiple times (1000 iterations). Themean value of the overlap across iter-

ations measures cluster stability.

2.5.1 Differences between MCI subgroups

Resulting subgroups of MCI participants were compared in terms of

their composite scores per domain and their risk of progression to

dementia. Pairwise domain score differences between subgroupswere

examined with Wilcoxon-Mann-Whitney U tests while applying the

Bonferroni correction for multiple comparisons. A multivariate Cox

proportional hazard regressionmodel tested the subgroupeffect in the

progression from MCI to AD dementia while controlling for age, sex,

and years of education. Kaplan-Meier survival curves illustrated pro-

gression to dementia of the different MCI subgroups, and curves were

compared using omnibus and pairwise log-rank tests.

2.6 Prediction of progression to dementia

Domain-specific scores were also evaluated in the automated predic-

tion of progression from MCI to AD dementia. This evaluation con-

sisted of classifyingMCI patients as either stable or converters follow-

ing the time window approach27 fixing five different time periods: 12,

24, 36, 48, and60months. The six composite scores alongwith age, sex,

and years of educationwere used to train random forest classifiers.28 A

random forest (RF) is an ensemble of decision trees constructed using

a bootstrap aggregating approach. To create each decision tree, a new

training set is generated by sampling, uniformly and with replacement,

the original training set. This procedure ensures the collection of trees

comes from independent identically distributed samples. The predic-

tion is given by the majority voting of the decision trees in the ensem-

ble, effectively improving the prediction accuracy.28

Classification performance was assessed by constructing the

receiver operating characteristic (ROC) and calculating its area under

the curve (AUC). Depending on the time window, data for training

the classifier might be highly unbalanced. This was taken into account

when designing the cross-validation scheme: at each iteration, a RF

classifier was trained with a balanced subset by randomly selecting

the 70% of the underrepresented class with an equal number of sam-

ples from the other class. The classifier was tested with the remaining

observations, in some cases reaching a larger number of samples. This

process was repeated 1000 times per timewindow.

2.7 Implementation

Allmethodswere implemented in R (version 3.6.3), code for processing

ADNI data and reproducing the reported results is available in https:

//github.com/diagiraldo/neuropsycho_adni .

https://github.com/diagiraldo/neuropsycho_adni
https://github.com/diagiraldo/neuropsycho_adni
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TABLE 2 Description ofMCI subgroups, along with the CU sample for reference

CU MCI subgroup

reference MCI 1 MCI 2 MCI 3 MCI 4

N 668 159 129 88 32

Age (mean± SD) 73.1± 7.4 72.4± 7.8 72.2± 7.8 74.6± 7.5 72.9± 7.7

Sex (% female) 56.4 43.4 34.9 43.2 43.8

APOE ε4 (% carriers) 30.2 35.9 47.3 55.2 75

Memory –0.59± 0.70 –0.04± 0.63 0.57± 0.72 0.95± 0.73 1.51± 0.67

Language –0.26± 0.56 –0.18± 0.49 0.39± 0.72 0.50± 1.01 0.66± 1.00

Executive –0.14± 0.26 –0.09± 0.26 0.13± 0.47 0.19± 0.44 0.31± 0.62

Visuospatial –0.27± 0.96 –0.71± 0.43 0.83± 1.09 0.49± 1.40 1.22± 1.35

Orientation –0.51± 0.82 –0.70± 0.41 –0.59± 0.45 1.60± 0.98 5.06± 1.84

Attention –0.15± 0.35 –0.08± 0.38 0.11± 0.72 0.28± 1.00 0.22± 0.89

Mean CSI — 0.97 0.94 0.9 0.85

Cox proportional HR — ref. 2.57

P≤ .001

3.84

P≤ .001

7.68

P≤ .001

95%CI — ref. 1.59–4.20 2.33–6.30 4.32–13.70

Notes: Demographic information, mean and SD of domain composite scores (mean± SD), mean CSI, and proportional HRwith their 95%CI.

Abbreviations: APOE, apolipoprotein E; CI, confidence interval; CSI, cluster stability index; CU, cognitively unimpaired; HR, hazard ratio; MCI, mild cognitive

impairment; SD, standard deviation.

3 RESULTS

3.1 Domain scores

Fit statistics given by CFA indicate a good model fit (RMSEA = 0.09,

TLI = 0.95). After the factor model parameters are estimated, domain

composite scores are obtained as linear combinations of subscores.

Weights for this calculation are presented in File B.

3.2 Subgroups of MCI patients

The cognitive state of MCI participants was characterized by the six

domain scores and different impairment profiles were found in the

MCI patient sample by cluster analysis. After the distance between

subjects is estimated, there are multiple criteria to choose the num-

ber of clusters (k) into which data could be divided. After examin-

ing 30 different indices,26 data partition in four clusters was sug-

gested by 13 of these indices. Additionally, the mean cluster stability

index was checked for multiple values of k resulting in values above

0.85 for 2 ≤ k ≤ 4. PAM was applied to divide the MCI sample into

four different subgroups. The description of these subgroups is pre-

sented in Table 2 along with the description of the group of CU par-

ticipants as a reference. Figure 2 shows the distributions of domain

dysfunction scores for each one of the MCI subgroups. A total of 60

pairwise tests was performed to compare domain composite scores

between MCI subgroups and against the CU group, effect size r was

computed for each test, and P-values were adjusted for multiple com-

parisons using the Bonferroni correction. Two profiles were observed

at the extremes of the dysfunction spectrum: group 1 exhibits the low-

est impairment in all domains, being comparable with the CU group,

and group 4 has the highest dysfunction scores in five out of six

domains.

In the control-like subgroup, 49 out of 159 individuals progressed to

dementia on the course of the follow-up; those participants converted

on average 44.5months after evaluation. This particular subgroup sup-

ports previous findings, which suggest a considerable number of false

positives in the diagnosis ofMCI in the ADNI database.29,30

Characterization of MCI participants with the six proposed domain

dysfunction scores revealed four different cognitive profiles in the

sample of ADNI participants diagnosedwithMCI:

• MCI 1 shows the lowest scores for all six domains. Compared

to controls, this group shows significantly highermemory dys-

function (effect size r = 0.31, P < .00005) and lower visu-

ospatial dysfunction score (effect size r = 0.17,P = .00008).

Indeed, these participants should have exhibited some mem-

ory impairment during the neuropsychological evaluation to

be diagnosedwithMCI according to the ADNI criteria.

• MCI 2 is more impaired than MCI 1 in memory (effect

size r = 0.39, P < .00005), language (effect size r = 0.44,

P< .00005), executive function (effect size r=0.25, P= .0012),

and visuospatial abilities (effect size r = 0.75, P < .00005).

Although the attention dysfunction does not differ from MCI

1, it does differ with respect to CU (effect size r = 0.18,

P= .00001).

• The third subgroup (MCI 3) differs from MCI 2 only in mem-

ory (effect size r = 0.25, P = .015) and orientation (effect size

r= 0.81, P< .00005).

• The last subgroup (MCI 4) differs fromMCI 3 in memory (effect

size r = 0.32,P = .026) and orientation (effect size r = 0.73,

P< .00005).
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F IGURE 2 Distribution of domain dysfunction scores per mild cognitive impairment (MCI) subgroup including the complete group of
cognitively unimpaired (CU) participants as reference

Kaplan-Meier survival curves for the four subgroups of MCI are

illustrated in Figure 3. According to the pairwise comparison between

curves,MCI subgroup 1 exhibits significantly lower progression proba-

bility than the other three subgroups, and subgroup 4 has significantly

higher progression probability than the rest of subgroups. The result-

ing MCI subgroups show distinctive survival curves confirming that

the different cognitive profiles are related with different progression

risk.

Themultivariate Coxmodels took the control-like subgroup (MCI 1)

as reference and included sex, age, and years of education as covari-

ates. The resulting proportional hazard ratios (HR) are presented in

Table2,HRestimates forMCI2and3compared toMCI1are2.57 (95%

confidence interval [CI: 1.59–4.20]), and 3.84 (95% CI [2.33–6.30]),

respectively. Significantly higher HR results forMCI subgroup 4, which

have a risk of progression to AD dementia around 7.7 (95% CI [4.32–

13.70]) times higher than the risk for the control-like subgroup. From

the Coxmodel, age, years of education, and sex had no effect.

3.3 Automated prediction of progression to AD
dementia

Classifiers were trained for each time window with the six domain

scores, years of education, age, and sex. To comparewith standard out-

come measures, at each iteration of the validation scheme, two addi-

tional classifierswere trainedwhile including the samecovariates using

the same sets of observations. The first onewas trainedwith the scores

of commonly used neuropsychological tests, namely the ADAS-Cog,

MMSE, MoCA, and AVLT, while the second was trained only with the

ADAS-Cog. The number of trees for all RFwas set at 200. The distribu-

tions of the AUC values per time period across the 1000 iterations for

the three classifiers are shown in Figure 4, mean AUC for classification

with domain scores are 0.68, 075, 0.74, 0.74, and 0.76 for prediction

within 12, 24, 36, 48, and 60months, respectively.

Classifier performance is significantly higher when trained with

domain scores rather than with the set of test totals, including the

ADAS-Cog.When predictingMCI conversionwithin 12months, result-

ing mean AUCs are 0.68 and 0.63 (Cohen’s d = 0.73, P ≤ .00001) for

classifiers trained with dysfunction scores and total tests, respectively.

When the conversion prediction is donewithin 60months, thesemean

AUC values are 0.76 and 0.69 (Cohen’s d = 1.59, P ≤ .00001), respec-

tively. Although it might be counter-intuitive that prediction perfor-

mance is better for the long term than for the short term, this is likely

due to the varying number of cases used for training and testing at each

timewindow (see File C in supporting information).

4 DISCUSSION

This work has introduced a data-driven methodology to character-

ize the cognitive state of MCI patients by developing specific domain

scores using subscores from the neuropsychological tests battery

applied to the ADNI participants. These domain scores highlight sub-

groups ofMCI patientswho exhibit different risks of progression toAD

dementia, and showbetter performance than standardoutcomeswhen

predicting conversion fromMCI to dementia up to 5 years.
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F IGURE 3 Kaplan-Meier curves for themild cognitive impairment (MCI) subgroups

F IGURE 4 Distribution of area under the curve values for prediction of progression frommild cognitive impairment (MCI) to dementia within
12, 24, 36, 48, and 60months. Classifiers trained with composite domain scores consistently outperform classifiers trainedwith the Alzheimer’s
Disease Assessment Scale –Cognitive subscale (ADAS-Cog), and with the set of total tests scores fromADAS-Cog, Mini-Mental State Examination
(MMSE), Montreal Cognitive Assessment (MoCA), and Rey Auditory Verbal Learning Test (AVLT)
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A six-factor model estimates simultaneously composite scores for

all the domains. By learning the weights for domain score calculation

from a sample containing both CU and MCI in similar proportions,

we can capture a more general statistical structure of the cognitive

evaluation than if we had used a narrower sample within the spec-

trum of impairment. This is an extension of previous works that estab-

lish single-factor models to obtain a composite measure for particu-

lar domains such as memory11 and executive functioning.12 Memory

composite score in this work strongly agrees with the one hypothe-

sized for ADNI-Mem,11 resulting therefore in highly correlated mem-

ory measures (r = −0.943, P < .00005). Executive function score pro-

posed here is also correlatedwith ADNI-EF12 (r=−0.818, P< .00005),

even though subscores from ADAS-Cog and MoCA, not considered in

ADNI-EF, were herein included.

This investigation evaluates the characterization with two comple-

mentary analyses with a sample of MCI patients: unsupervised clus-

tering and automated prediction of future progression to dementia. In

the first analysis,MCI heterogeneity is approximated by the six domain

composite scores instead of multiple separate scores per domain. As

weights for domain score calculation were obtained as a solution

that minimizes the portion of the variance that is not explained by

the factors,24 the obtained composite scores do mitigate the effect

of individual measurement errors, leading to more robust measures

of impairment for each domain. This is a methodological advantage

over previous works that studied MCI heterogeneity with separate

neuropsychological scores per domain.29–31 Another methodological

advantage consists in adapting the notion of distance between sub-

jects by including the domain covariance in the metrics. Most of the

state-of-the-art research performs the cluster analysis29,31–33 using

the Euclidean distance to compare sets of cognitive variables between

individuals. However, this distance relies on the assumption of orthog-

onality between dimensions and therefore eachmeasure is considered

independent from the other ones, an assumption hard to hold and far

from the given nature of the data.

The cognitive characterizationpresentedpartitioned theMCI group

into four different subgroups. Beyond the methodological differences,

the obtained division is consistent with previous works investigating

cognitive heterogeneity inMCIwithADNIdata.29–31,34 All theseworks

also identified a subgroupof control-like individuals in the groupof par-

ticipants diagnosedwith amnesticMCI according to ADNI criteria, and

two or three MCI subgroups, which vary in the level of impairment of

memory, executive function,31 and language.29 In this work, the sepa-

ration between the remaining three MCI subgroups is guided by two

domains that covary closely, memory and orientation, while showing

relatively similar levels of impairment in language, executive function-

ing, visuospatial abilities, and attention. Examination of future progres-

sion to dementia for the differentMCI subgroups in this study resulted

in well-differentiated survival curves, providing evidence for the use-

fulness of the proposed characterization to stratify the risk of progres-

sion to dementia during the upcoming 5 years. Therefore, the progres-

sive risk of progression from MCI 1 to MCI 4 seems to be driven by

memory and orientation. Although the important role of orientation

might beunexpected, it is coherentwith previousworks that have iden-

tified orientation subscores among themost sensitivemeasures of cog-

nitive impairment.4,35 The four MCI subgroups are similar in terms of

ageand sexdistribution, but theyexhibit differences in thepercentages

of APOE ε4 carriers (including the genotypes APOE ε2/ε4, APOE ε3/ε4,
and APOE ε4/ε4). Although the relation between APOE status and risk

of AD dementia is widely known, the fact that this known pattern was

exposed by orientation impairmentmight beworthy of further analysis

in future work.

The domain scores were also evaluated for automatically predicting

future progression from MCI to AD dementia. Cross-validated results

demonstrate that classifiers trained with our composite scores con-

sistently outperform classifiers trained with the ADAS-Cog and multi-

ple standard cognitive measures in addition to the ADAS-Cog, such as

the MMSE, MoCA, and the AVLT. Prediction with domain scores also

outperforms prediction with other cognitive composite scores in the

literature.4,35,36 When the domain scores are accompanied by theClin-

ical Dementia Rating (CDR) and the Functional Activities Question-

naire (FAQ), prediction performance is slightly better than the predic-

tion with a set of 22 selected neuropsychological features.37 Informa-

tion about a fairer comparisonwith the state-of-the-art can be found in

File C.

Considering that psychiatric conditions may play an important role

in the development of cognitive impairment, we tested if the addi-

tion of psychiatric information improved the performance of progres-

sion prediction. Classification results indicate a very modest improve-

ment of AUC values suggesting that psychiatric symptoms give little

additional information that could be used to distinguish between MCI

patients that will or will not progress to dementia. More details about

this experiment and results are in File C.

One important limitation of this study is that only data from ADNI

were used, so generalization to other samples of populations was not

tested. The main reason for this is that the proposed methodology

needs the subscores from neuropsychological tests and information

with this level of detail is not available in other public databases.

The presented set of composite scores leads to a quantitative

characterization of cognitive state for MCI patients. The presented

results demonstrate that these composite domain scores are use-

ful to stratify MCI patients and predict their future progression to

dementia. Therefore, those scores could be easily included for patient

monitoring or clinical trials. Future work should include longitudinal

evaluation of domain dysfunction, along with AD biomarkers, that

could improve understanding of the continuum between MCI and AD

dementia.
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